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Abstract
We present a nonlinear description of the Rosensweig instability in isotropic
magnetic gels based on the energy minimizing method used by Gailitis to
describe the Rosensweig instability in typical ferrofluids. We extend his
discussion to media with elastic degrees of freedom, assuming the shear
modulus as a perturbation to the pure fluid case. We study the relative stability
of the regular planforms of stripes, squares and hexagons as a function of the
elastic shear modulus.

1. Introduction

1.1. Ferrofluid convection

Ferrofluids are suspensions of magnetic nanoparticles in a suitable carrier liquid. They are
coated by polymers or charged in order to prevent coagulation. They show various distinct
material properties, like superparamagnetism (large magnetic susceptibility, high saturation
magnetization in rather low fields), sensitivity to magnetic Kelvin forces, and a rather
complicated influence of magnetic fields on their flow behaviour [1, 2]. This has led to
numerous important applications as seals (in hard disk drives), active dampers (clutches),
thermal conductors (loudspeakers), as well as in the medical sector (hyperthermia, drug
targeting in cancer therapy). The favourable ferrofluid properties are generally preserved when
dealing with more complex systems, like ferronematics and ferrogels. In addition, new features
are coming into play, leading to quite unusual and novel types of behaviour. Ferronematics
are obtained if the carrier liquid is a lyotropic or thermotropic nematic liquid crystal, while
ferrogels are produced by combining polymers and ferrofluids and crosslinking them into a
gel [3]. If the latter process is performed in an external field, a uniaxial ferrogel with a frozen-
in magnetization is obtained [4]. We are interested in the unconventional macroscopic dynamic
behaviour of typical ferrofluids and, in particular, in the unusual behaviour of unconventional
‘ferrofluids’, i.e. materials using ferrofluids as ingredients such as ferronematics and ferrogels.

Viewed as binary mixtures of magnetic particles and a carrier fluid, ferrofluids have
rather extreme properties. With the grain size being large on molecular length scales, the
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particle mobility (or concentration diffusivity) is extremely small (very small Lewis number
L), allowing us to disregard the concentration dynamics in most cases [5, 6]. However, this
simplification does not hold for thermal convection since, due to the pronounced Soret effect
of these materials in combination with a considerable solutal expansion (large separation ratio
ψ), the resulting solutal buoyancy forces are dominant. By considering the classical Rayleigh
Bénard setup, it has been shown [7] that both the linear as well as the nonlinear convective
behaviour is significantly altered by the concentration field as compared to single-component
systems. Starting from an initial motionless configuration with a uniform concentration
distribution, convective perturbations are found to grow even at Rayleigh numbers well below
the threshold Ra0

c of pure-fluid convection. It turns out that the actual critical Rayleigh number
Rac is drastically smaller but experimentally inaccessible due to the extremely slow growth of
convection patterns for Ra � Rac, requiring extremely large observation times. On the other
hand, operating the ferrofluid convection experiment at Rayleigh numbers Rac < Ra � Ra0

c
reveals considerable positive growth rates, which lead to a saturated nonlinear state almost as
fast as pure-fluid convection does at Ra > Ra0

c .
In an external magnetic field the apparent imperfection of the bifurcation is even more

pronounced. Magnetophoretic effects, as well as magnetic stresses, have been taken into
account in the static and dynamic parts of the equations, leading to rather pronounced boundary
layer profiles (with respect to the concentration and magnetic potential). This boundary layer
couples effectively to the bulk behaviour due to the magnetic boundary conditions [8].

Another interesting case is ferrofluids with a negative separation ratio (negative Soret
coefficient). When heating from below molecular binary mixtures with a negative separation
ratio, the thermal and solutal density gradients are opposite to each other, such that the linear
stationary thermal instability is suppressed for ψ < −1. Instead, this antagonistic behaviour
leads to a linear convective instability of oscillatory type at Ra0

c , the critical Rayleigh number
for the onset of convection in the single fluid case. This feature is also found for ferrofluids,
but the nonlinear treatment shows that the linearly unstable oscillatory states are transients only
and decay after some time, rendering the final convection-free state stable [9]. Above a second
threshold, somewhat higher than Ra0

c , a finite amplitude stationary instability is found, while
small amplitude disturbances do not destroy the convection-free state. If molecular binary
mixtures with a separation ratio ψ < −1 are heated from above, a linear stationary instability
is found, which is basically driven by the solutal buoyancy and only slightly modified by
thermal variations. In ferrofluids, however, this stationary instability is very different from
that obtained by heating from below with a positive separation ratio, since the concentration
and temperature dynamics show completely different behaviour. In the former case, small-scale
structures arise at very high Ra numbers, whose wavelength decreases strongly with increasing
Ra. For smaller Ra numbers (|Ra| ∼ Ra0

c ) the procedure of using the separation of thermal
conduction and concentration diffusion times breaks down.

In the nonlinear domain the question of pattern formation and competition has been
discussed numerically and using model amplitude equations for ferrofluids with positive and
negative separation ratios [10].

1.2. Ferronematics

If the carrier liquid is a nematic liquid crystal, several phases are possible. Using a
Landau-type free-energy function, one can describe the phase transitions from an isotropic
(superparamagnetic) ferrofluid to a ferromagnetic nematic liquid crystal either directly or via
a superparamagnetic nematic liquid crystal [11]. These two nematic phases are usually both
called ‘ferronematic’, although they are distinct phases. Both show nematic ordering, but only
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the ferromagnetic phase shows spontaneous magnetic ordering, additionally. In the presence of
a strong external magnetic field, these transitions are smeared out and the different ferronematic
phases become rather similar to each other. In nature, no ferromagnetic ferronematic phase has
been found until today, so the theoretical macroscopic considerations have been restricted to
the superparamagnetic variant.

In equilibrium, the orientation of the nematic director and of the magnetization (induced
by an external magnetic field) are locked. The macroscopic dynamics of ferronematics can be
described on two different levels, either assuming the magnetization to be relaxed to its static
value, or it can be treated as an additional dynamic (slowly relaxing) degree of freedom. In the
former case, the equations are structurally the same as for an ordinary nematic liquid crystal,
except for the fact that the influence of the magnetic field is much more intense. However, in
ordinary nematics, linear magnetic field effects in the dynamics have never been discussed or
detected, possibly due to their smallness. In ferronematics, there is a good chance to find those
effects, which arise as various linear field (Hall-like) contributions to the fluxes [12]. These new
dynamic effects predicted come in four classes. First, the alignment of the nematic director in
shear flow is modified by an external field such that the director has a component out of the shear
plane, even if the field is in the shear plane. Second, the heat flux due to a temperature gradient,
in a magnetic field orthogonal to the latter, induces an additional reversible heat current that
is perpendicular to both. Third, a linear field contribution to viscosity leads, for a magnetic
field orthogonal to the propagation direction of a sound wave, to a force on a tracer particle
in the third direction. Fourth, when the director is reoriented in an external magnetic field, its
relaxation is accompanied by an oscillation that is not observed in usual nematics.

Another possibility for probing the dynamic linear field contributions is the detection
of their qualitatively new effects on some well-known instabilities [13]. In the Rayleigh–
Bénard instability with the temperature gradient opposite to gravity, one gets, in addition to
convection flow in the form of one-dimensional rolls, a vorticity flow. As a consequence, in
the homeotropic case (the director oriented parallel to the magnetic field) the streamlines are
oblique to the roll cross-section, while in the planar case (the director perpendicular to the
magnetic field, but parallel to an electric field) the rolls themselves are tilted with respect to
the director, depending on the magnetic field strength. In the Saffman–Taylor viscous fingering
instability of a growing interface between fluids of different density, the new linear magnetic-
field contributions lead to a rotation of the finger structure.

The complete set of macroscopic dynamic equations for ferronematics includes the
magnetization as an independent slowly relaxing variable [14]. Orientational changes of the
magnetization are coupled to nematic director reorientations not only in the statics, but in the
dynamics as well. In addition, there are reversible and dissipative dynamic crosscouplings
between (compressional, shear and elongational) flow, (rotations and changes of the absolute
value of the) magnetization and director reorientations. Some of these couplings are only
possible when an external magnetic field is present. Some combinations of the parameters that
describe these crosscouplings can be measured by employing sound waves and shear rheology.
For a sound wave propagating in a direction oblique to the preferred directions (equilibrium
magnetization, nematic director), compressional flow (and changes of the absolute value of the
magnetization) are coupled to shear flow (and rotations of the director and the magnetization).
There is also a field-dependent contribution to sound damping. In addition, the linear response
of the system to oscillatory shear flow has been discussed, concentrating on frequencies below
the transverse magnetization relaxation frequency. This shows directly the influence of the
magnetic dynamic degree of freedom on the director dynamics. Even without a magnetic field,
the modified nematic director diffusion couples to the flow. As a consequence, the apparent
viscosity is different from the bare one. In the presence of an external field, the director
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diffusion/relaxation is shifted to a finite frequency, which increases approximately with the
third power of the field strength.

1.3. Ferrogels

Due to the crosslinking in ferrogels, a network is created that gives rise to elasticity. The truly
hydrodynamic variable describing elasticity is the displacement field, or more appropriately
for nonlinear theories, the strain tensor. Isotropic ferrogels are superparamagnetic and the
magnetization is an additional independent slowly relaxing variable, which allows us to study
the system for rather high frequencies as well [15]. The fact that magnetic grains are attached
to the network is expressed by the static coupling of the magnetization and the strain tensor
(magnetostriction). This leads to an additional field-dependent contribution to the sound
spectrum. The contribution to the transverse sound modes depends on the relative angle
between an external field and the wavevector. From the low frequency limit of the sound
spectrum, one can obtain information about the effective magnetic-field-dependent elastic
moduli. However, these moduli are different from those measured by static elongations or
shear deformations in an external field. The reason is that, due to the finite magnetostriction,
the linear response theory is not applicable. Only in the limit of a vanishing field are they equal
and matching the true elastic moduli. In the high-frequency limit, one gets a shift in the sound
velocities proportional to the dynamic coupling between the flow and the magnetization. This
reflects the fact that the magnetization is an independent variable. Finally, we proposed that,
in an experiment with an oscillating temperature gradient as well as a gradient of the magnetic
field, shear weaves are excited [15].

Ferromagnetic gels are uniaxial if the frozen-in magnetization denotes the only preferred
direction. Such materials are potentially very interesting for a variety of applications. Uniaxial
magnetic gels show, on the one hand, similarities to other anisotropic gels, like nematic
elastomers, and to isotropic ferrofluids and ferrogels, but the combination of preferred direction,
magnetic degree of freedom, and elasticity makes them unique and very unusual. Prominent
features are [16] the relative rotations between the magnetization and the elastic network, which
couple dynamically flow, shear, and magnetic reorientation. As a result, shear flow in a plane
that contains the frozen-in magnetization induces a rotation of the magnetization, not only
within the shear plane but also out of the shear plane. This behaviour is qualitatively different
from that of other types of materials. The basic results hold, even if the constant shear flow
is replaced by an oscillating one, which is very likely in actual experiments, although the
formulae for that case will become much more complicated. Another outstanding aspect of
the hydrodynamics of this material is the difference between the mass current density (mass
density times velocity) and the momentum density due to a non-vanishing magnetization
vorticity. Unheard of in other classical condensed phases, this is known from some uniaxial
quantum fluids, where, however, experiments on this aspect are currently out of reach. In
uniaxial ferromagnetic gels, the static susceptibilities for momentum fluctuations (the long-
wavelength limit of the static momentum correlation functions) are given by the (bare) mass
density for some geometries only, but show an increased renormalized effective density for
other directions. In addition, an oscillating external magnetic field induces not only an
oscillation of the magnetization in the direction of the external field, but also oscillating shear
strains. The latter are found in planes that contain the frozen-in magnetization and either the
external field or the third, perpendicular direction. In addition, the external field also induces
a magnetization component perpendicular to both the field and the frozen-in magnetization.
The reversible transport coefficient that governs this effect can be calculated by referring to
the microscopic quantum mechanical spin-type dynamics for magnetic moments and using
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the projector formalism to evaluate the frequency matrix. This coefficient vanishes with the
magnetization and is, thus, characteristic for this type of ferromagnetic gel.

Surface undulations of the free surface of viscous liquids are known to be able to propagate
as gravity or capillary waves. In more complex systems like viscoelastic liquids or gels,
the transient or permanent elasticity allows for modified transverse elastic waves at free
surfaces [17]. They are excited, e.g. by thermal fluctuations or by imposed temperature patterns
on the surface. In ferrofluids, magnetic stresses at the surface come into play. In particular, in
an external magnetic field normal to the surface, there is a focusing effect on the magnetization
at the wave crests of an undulating surface with the tendency to increase the amplitude of the
undulations [1]. Above a critical field strength, wave propagation is not possible anymore and
the surface becomes unstable with respect to a stationary pattern of surface spikes (Rosensweig
or normal field instability). The same linear instability mechanism is operative when dealing
with (isotropic) ferrogels where elasticity comes into play as an additional stabilizing factor.
Using linearized dynamic equations and appropriate boundary conditions, one gets [18] the
general surface wave dispersion relation for ferrogels (in a normal external field), which
contains, as special cases, those for ferrofluids and non-magnetic gels and can be generalized
to viscoelastic ferrofluids and magnetorheological fluids. A linear stability analysis reveals the
threshold condition, above which stationary surface spikes grow. This critical field depends
on gravity, surface tension and on the elastic (shear) modulus of the gel, while the critical
wavelength of the emerging spike pattern is independent of the elastic modulus of the gel.
As in the case of ferrofluids, neither the threshold nor the critical wavelength depends on the
viscosity.

A linear theory can determine neither the actual spike pattern nor the true nature of the
instability (forward, backward etc). The standard weakly nonlinear (amplitude expansion)
theory that provides suitable amplitude equations, by which these questions can be answered,
is more complicated in the present situation due to two problems. First, the driving force of the
instability is manifested in the boundary conditions but not in the bulk equations, and second the
surface profile (the location where the boundary conditions have to be applied) changes with the
order of the amplitude expansion. Thus, for ferrofluids a different path has been chosen [19, 20].
Neglecting the viscosity (and any other dissipative process) from the beginning, the system is
Hamiltonian and its stability is governed by a free energy, more precisely by the surface free
energy, since the magnetic destabilization acts at the surface. We generalize this approach
to (isotropic) ferrogels by taking into account in addition the elastic free energy. The results
have to be taken with the caveat that neglecting the viscosity is justified at the (linear) instability
threshold, but is an unproven assumption for the nonlinear domain and for the pattern formation
and selection processes.

2. Surface energy density

Describing typical ferrofluids within the framework of the energy minimization method, the
expression for the energy density at the surface was first given by Gailitis [19]. Assuming
an incompressible ferrofluid occupying the negative half-space, the surface energy density has
three contributions: a gravitational term accounting for the hydrostatic energy; a contribution
due to surface tension; and the energetic contribution of the magnetic field that is applied
perpendicular to the initially flat surface. Averaging the entire surface, one obtains [19] as
the difference in energy density with respect to the flat configuration

U(ξ) = 1

2
ρg
〈
ξ 2(x, y)

〉+ σ

〈√
1 + (grad ξ(x, y))2

〉
+ 1

2μ0μ

〈∫ +∞

−∞
B2(x, y, z) dz

〉
. (1)
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In our notation, the surface deflection from its unperturbed flat state is described by ξ(x, y) and
the magnetic induction by B. The surface energy density depends on the mass density ρ, the
gravitational acceleration g, the surface tension σ and the magnetic permeability of the vacuum
μ0 and the medium μ. Averaging with respect to the surface S is understood in the following
usual way:

〈F(x, y)〉 = lim
S→∞

1

S

∫ ∫

S
F(x, y) dx dy. (2)

For the surface deflection itself, we take a superposition of different wavevectors that can
be divided into two groups. The first group will contain all those vectors whose wavelength
corresponds to the critical one. The second group accounts for all the possible higher harmonic
wavevectors, constructed from the main modes via superposition with Fourier modes in space
(k) and time (ω):

ξ(x, y, t) =
M∑

i=1

Aki cos(ki · r)eiωt +
N∑

i, j=1
ki ±k j �=0

Aki ±k j cos((ki ± k j ) · r)eiωt . (3)

In this ansatz, we already assume regular two-dimensional patterns.
Starting to describe elastic media with this method, we have to account for the elastic

degrees of freedom. This may be done by just adding an additional energetic contribution due
to elastic deformations (described by the strain field εi j ) to the surface energy density (1), as
given by Jarkova et al [15]:

〈∫ ξ

−∞
1
2μi jklεi jεkl dz

〉
. (4)

It is sufficient to take the integral with respect to z just from the bottom (−∞) to the top (ξ )
of the ferrogel, since we assume vacuum in the positive half-space [18]. The explicit form
of the elastic tensor μi jkl was given by Jarkova et al [15] and takes the following form in an
incompressible medium, with μ2 being the elastic shear modulus:

μi jkl = μ2
(
δikδ jl + δilδ jk

)
. (5)

In total, we therefore get the following expression for the surface energy density in an
incompressible, isotropic ferrofluid that is now left for minimization with respect to different
regular patterns arising at the gel–vacuum interface beyond the linear threshold:

U(ξ) =
〈
ρg

2
ξ 2 + σ

√
1 + (∂xξ)2 + (∂yξ)2 + 1

2μ0μ

∫ +∞

−∞
B2(x, y, z) dz

+ 2μ2

∫ ξ

−∞
(ε2

xy + ε2
yz + ε2

xz) dz + μ2

∫ ξ

−∞
(ε2

xx + ε2
yy + ε2

zz) dz

〉
. (6)

In order to minimize equation (6) with respect to the amplitudes of the surface deflection, we
first have to find the explicit expressions for the strain field in terms of ξ(x, y, t). We therefore
solve the system of equations given in [18], where we introduced a scalar potential φ and
a vector potential Ψ for the different contributions of the velocity, namely vpot = ∇φ and
vrot = ∇ ×Ψ. To fulfill the tangential boundary conditions at the surface, these potentials have
to be of the form

�̂x = −2k(−iky)

q2 + k2
φ̂ and �̂y = +2k(−ikx)

q2 + k2
φ̂ (7)

φ̂ = iω
q2 + k2

k(q2 − k2)
. (8)
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We recall the fact that there appeared a different decay-length 2π/q with respect to the z-
direction for the components of the vector potential Ψ, where

q2 = k2 − ρω2

μ2 − iων2
, (9)

with k being the absolute value of k and ν2 the shear viscosity.
Since dissipation will not play a role in the minimization of the energy density for this

stationary instability, we discard the viscosity in equation (9) for the rest of our discussion.
Following the ansatz given in [18], the explicit expressions for the three components of the
velocity field eventually take the form

vx =
∑

i

(−ikix)

(
eki z − 2

qi ki

q2
i + k2

i

eqi z

)
iω(q2

i + k2
i )

ki(q2
i − k2

i )
ξi (10)

vy =
∑

i

(−ikiy)

(
eki z − 2

qi ki

q2
i + k2

i

eqi z

)
iω(q2

i + k2
i )

ki(q2
i − k2

i )
ξi (11)

vz =
∑

i

ki

(
eki z − 2

k2
i

q2
i + k2

i

eqi z

)
iω(q2

i + k2
i )

ki(q2
i − k2

i )
ξi , (12)

where the sum is understood to account for all possible wavevectors under consideration, the
main modes as well as the higher harmonic modes.

With the assumptions made in [18], the strain is dynamically coupled to the velocity field
v via

∂tεi j = 1
2

(∇iv j + ∇ jvi
)
. (13)

Substituting equations (10)–(12) into (13), we find for the different components of the strain
tensor, again as a sum with respect to all possible wavevectors under consideration,

εzz =
∑

i

(q2
i + k2

i )e
ki z − 2qi ki eqi z

q2
i − k2

i

kiξi (14)

εxz =
∑

i

(−ikix)
(
eki z − eqi z

) q2
i + k2

i

q2
i − k2

i

ξi (15)

εyz =
∑

i

(−ikiy)
(
eki z − eqi z

) q2
i + k2

i

q2
i − k2

i

ξi (16)

εxy = −
∑

i

kix kiy
q2

i + k2
i

ki(q2
i − k2

i )

(
eki z − 2

qi ki

q2
i + k2

i

eqi z

)
ξi (17)

εxx = −
∑

i

k2
i x

q2
i + k2

i

ki(q2
i − k2

i )

(
eki z − 2

qi ki

q2
i + k2

i

eqi z

)
ξi (18)

εyy = −
∑

i

k2
iy

q2
i + k2

i

ki (q2
i − k2

i )

(
eki z − 2

qi ki

q2
i + k2

i

eqi z

)
ξi . (19)

In the limit of a stationary instability (ω → 0), we then obtain the following expressions:

vi = 0 (20)

εzz = −
∑

i

k2
i zeki zξi (ω = 0) (21)

εxz = −
∑

i

(−ikix)ki zeki zξi (ω = 0) (22)
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Figure 1. Absolute value of the strain for two particular modes, k = 1 and 2 respectively, according
to (21) as a function of depth and for an arbitrary infinitesimal deflection of the surface at a given
point (x, y).

εyz = −
∑

i

(−ikiy)ki zeki zξi (ω = 0) (23)

εxy =
∑

i

kixkiyzeki zξi(ω = 0) (24)

εxx =
∑

i

k2
i x zeki zξi (ω = 0) (25)

εyy =
∑

i

k2
iyzeki zξi (ω = 0). (26)

The limit ω → 0 can only be performed after εi j has been calculated, due to equation (13). In
figure 1 the decay of the strain field εzz along the z-axis is plotted for two different wavevectors
in dimensionless units. These are chosen such that lengths are measured in units of the inverse
characteristic wavevector k−1

c = √
σ/ρg, energy densities in terms of σ , the magnetic field in

units of the critical magnetic field, and the elastic shear modulus μ2 in terms of
√
σρg.

Using expressions (21)–(26) we can now formulate the final expression for the surface
energy density. The nonelastic parts—represented by the first three terms in equation (6)—
are taken from the discussions of Gailitis [19], because they do not change in the presence
of elasticity. The fourth and fifth contribution in equation (6) are integrated and lead to the
expression for the energy density up to fourth order of the amplitude A of the surface deflection
ξ(x, y):

U = −1

2
E(B0, 1)

N∑

i=1

A2
ki

+ μ2

2

N∑

i=1

C(ki)A
2
ki

− Q(2π/3)
∑

i, j,l�N
ki ±k j ±kl

Aki Ak j Akl + 1
4K(0)

N∑

i=1

A4
ki

+
∑

i, j�N

K(�i j)A
2
ki

A2
k j
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− 1
2

N∑

i=1

(Q(0)A2
ki

A2ki + (E(B0, 2)− μ2C(2ki))A
2
2ki

)

−
∑

±

∑

i< j�N
|ki ±k j |�=1

(Q(π/4 ±�i j ∓ π/4)Aki Ak j Aki ±k j

+ 1
2

(E(B0, |ki ± k j |)− μ2C(ki ± k j )
)

A2
ki ±k j

)

+ O(A5). (27)

The analytical coefficients of the non-elastic contributions in equation (27) have been given
already by Gailitis [19]. For completeness, they are repeated here. The elastic coefficients
follow from averaging equation (6) and are given here as functions of the components of the
different wavevectors:

E(B0, k) = εk − 1
2 (1 − k)2 (28)

K(�) = sin3(�/2)+ cos3(�/2)− 9
16 − 1

8 cos(�)

+ η2 (2 − sin(�/2)− cos(�/2)

− sin3(�/2)− cos3(�/2)
)

(29)

Q(�) = η
(
2 cos(�/2)− cos2(�/2)

)
(30)

C(ki ) = k2
i xk2

iy

2k3
i

+ k2
i x

2ki
+ k2

iy

2ki
+ k4

i x

4k3
i

+ k4
iy

4k3
i

+ k4
i

4k3
i

(31)

with η = χ/(2 + χ).
As a first step to minimize expression (27), we note that all contributions with higher

harmonics are—similarly to the case of usual ferrofluids—of the form

Q(π/4 ±�i j ∓ π/4)Aki ±k j − 1
2

(E(B0, |ki ± k j |)− μ2C(ki ± k j )
)

A2
ki ±k j

. (32)

Minimizing separately with respect to these higher harmonic amplitudes, we find

Aki ±k j = Q(π/4 ±�i j ∓ π/4)

E(B0, |ki ± k j |)− μ2C(ki ± k j )
. (33)

Substitution into equation (27) leads to the final form of the surface energy density as a function
of the basic mode amplitudes:

U = − 1
2

N∑

i=1

(E(B0, |ki |)− μ2C(ki)) A2
ki

− Q(2π/3)
∑

i, j,l�N
ki ±k j ±kl =0

Aki Ak j Akl

+ 1

4

N∑

i=1

(
K(0)+ 1

2

Q2(0)

E(B0, |2ki |)− μ2C(2ki )

)
A4

ki

+
∑

i< j�N

(
K(�i j)+ 1

2

Q2(�i j)

E(B0, |ki + k j |)− μ2C(ki + k j )

+ 1

2

Q2(π −�i j)

E(B0, |ki − k j |)− μ2C(ki − k j )

)
A2

ki
A2

k j
. (34)
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Figure 2. Sketch of the different possible regular planforms under consideration.

3. Linear stability

Being an expansion up to fourth order in the amplitudes, equation (34) contains the results we
know already from the linear stability analysis [18]. Discussing the linear order in the dynamic
equations corresponds to a discussion of the second order in an energy functional description.
We therefore have to minimize

E(B0, k)− μ2C(ki ) = εk − 1
2 (1 − k)2 − μ2k, (35)

where ε = B2
0/B2

c − 1 is the control parameter with respect to the threshold Bc of typical
ferrofluids. Determining the minimum of this expression with respect to k leads to

∂

∂k

(
εk − 1

2
(1 − k)2 − μ2k

)
= ε − μ2 + (1 − k) = 0 (36)

εk − 1
2 (1 − k)2 − μ2k = 0. (37)

The first equation represents the definition of a minimum itself, while the second condition
represents the exchange of stability at onset. Below threshold, the flat surface is stable with
respect to a deformed one, and the energy density difference (34) is therefore negative. If the
deformed surface is stable, its energy density is positive. As the solution of equations (36), (37)
we find in dimensionless units

k = 1 and ε = μ2. (38)

This solution agrees with the findings in [18], where we could show that the characteristic
wavelength at onset is not changed compared to typical ferrofluids, while the threshold itself is
enhanced by the shear modulus of the medium.

4. Stability of different geometries

We discuss the stability of one of the regular patterns compared to the other ones. The specific
geometries used to calculate C(ki ) in equation (31) are illustrated in figure 2. We also assume
that the magnetic field is close to the critical field, permitting us to take the wavevector to be
identical to the characteristic wavevector at onset, k = 1.
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4.1. Stripe solutions

Starting with the simplest case, we discuss the stability of stripe patterns on the surface. For
convenience, we take the only wavevector appearing parallel to the x-axis, ki = δi x , and
obtain

U = −1

2
(ε − μ2)A

2 + 1

4

(
5

16
+ η2

4(ε − μ2)− 1

)
A4. (39)

For simplicity, we follow [19, 20] and neglect ε in the denominator of the fourth-order term
without any noticeable change of the results. Minimizing (39) with respect to the amplitude,
we get

AR =
√

ε − μ2

5
16 − η2

1+4μ2

(40)

and

∂2U
∂A2

⏐
⏐
⏐

A=AR

= 2(ε − μ2) = 0. (41)

Thus, from this discussion we cannot draw any conclusion for the stability of stripes (as was
the case for μ2 = 0 [19]).

4.2. Squares

We now start to discuss two main modes perpendicular to each other yielding a square lattice
(cf figure 2). To calculate the coefficient C, equation (31), without loss of generality, we take
the two wavevectors to be k1 = (1, 0) and k2 = (0, 1) and obtain

U = −1

2
(ε − μ2)(A

2
1 + A2

2)−
1

2

−5 + 16η2 − 20μ2

32(1 + 4μ2)
(A4

1 + A4
2)

+
⎛

⎝− 9

16
+ 1√

2
+ η2

15 − 13
√

2 + 4
(
−3 + 2

√
2
)
μ2

6 − 4
√

2 + 4
√

2μ2

⎞

⎠ A2
1 A2

2, (42)

where we have again neglected ε in the denominator of the fourth-order terms. Minimizing
equation (42) leads to the amplitude AS = AS(ε, μ2, η). Obviously, ε −μ2 > 0 is a necessary
condition for the stability of square solutions.

In figure 3 the value of the control parameter ε is plotted as a function of the magnetic
susceptibility χ for AS = 0.25 and different values of the shear modulus μ2. The isolines
separate configurations in the parameter space with amplitudes smaller and higher than AS =
0.25. In [20], for μ2 = 0, the plot has been used to illustrate the maximum magnetic
susceptibility at which the method diverges. As can be seen in figure 3, for finite shear modulus
the validity range of the method is increased to larger magnetic susceptibilities. For hexagons
(cf section 4.3), a similar result is obtained.

Following the method of Gailitis [19], i.e. starting with a more general ansatz for the
wavevectors that include stripes as a special case, we find that, even for μ2 > 0, stripes are
always unstable with respect to squares.

4.3. Hexagons

We now discuss a regular hexagonal pattern generated by the three main wavevectors with
angles of 2π/3 (cf figure 2). The difference in surface energy density with respect to the flat
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Figure 3. Isolines separating regions in the χ–ε-plane in which the amplitudes of squares are
smaller or higher than 0.25 for different values of the elastic shear modulus μ2. The critical
magnetic susceptibility is enhanced with higher shear modulus.

surface, equation (34), becomes

U = −1

2
(ε − μ2)(A

2
1 + A2

2 + A2
3)−

3

4
ηA1 A2 A3 + 1

4

[
5

16
− η2

1 + 4μ2

]
(A4

1 + A4
2 + A4

3)

+
[

−15

32
+ 3

8

√
3 +

(
11

8
− 7

√
3

8

)

η2

−
(

3
4 − √

3
)2
η2

(
1 − √

3
)2 + 2

√
3μ2

]

(A2
1 A2

2 + A2
2 A2

3 + A2
1 A2

3). (43)

In the following, we will refer to the expressions written in the first and second square brackets
as β(0, μ2) and β(2π/3, μ2), respectively, since in the limit of vanishing elasticity they are
identical to those given by Gailitis [19]. For the same reason, we will also refer to (3/4)η as γ .

We choose a regular hexagonal pattern and obtain from (43) by minimization

AH = A1 = A2 = A3 = γ ±√
γ 2 + 4(ε − μ2)[β(0, μ2)+ 4β(2π/3, μ2)]

2[β(0, μ2)+ 4β(2π/3, μ2)] . (44)

The hexagonal solutions exist only if the square root in equation (44) is real, and they are stable
if the second derivative of equation (43) with respect to the amplitudes is negative, leading to

−1

4[β(0, μ2)+ 4β(2π/3, μ2)] <
ε − μ2

γ 2
< 2

β(2π/3, μ2)+ β(0, μ2)

[2β(2π/3, μ2)− β(0, μ2)]2
. (45)

Since the β-values are positive (at least for χ � 1), hexagons can exist already below the linear
threshold ε = μ2. This existence range shrinks, however, for ferrogels compared to ferrofluids,
since β(θ, μ2) > β(θ, 0) for both θ = 2π/3 and 0. For the same reason, the amplitude of the
hexagonal pattern (44) decreases with increasing elastic modulus. Clearly, elasticity stabilizes
a system against the Rosensweig instability, which is manifest not only in an increase of the
(linear) threshold but also in a decrease of the spike height. The discussion for the stability
boundary at high positive values of ε−μ2 in equation (45) is less stringent. However, there is a
strong tendency that this stability boundary is shifted to smaller values in ferrogels for realistic
material parameters.
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Figure 4. Qualitative sketch (not to scale) of the evolution of the amplitudes for squares (AS)
and hexagons (AH). The dashed lines correspond to the case of a ferrofluid, while the solid lines
qualitatively describe the behaviour for ferrogels with finite shear modulus μ2. The dotted lines
represent the unstable branches.

Following the method of Gailitis superposing hexagons and squares, we investigate the
relative stability of hexagons and squares. We find that squares are unstable with respect to
hexagons under the condition

ε − μ2

γ 2
<

β(0, μ2)+ 2β(π/2, μ2)

[2β(2π/3, μ2)+ 2β(π/6, μ2)− 2β(π/2, μ2)− β(0, μ2)]2
, (46)

which is just Gailitis’s expression, but with μ2-dependent β-abbreviations

β(π/2, μ2) = − 9

16
+ 1√

2
+ 15 − 13

√
2 − 4(3 − 2

√
2)μ2

6 − 4
√

2 + 4
√

2μ2

η2 (47)

β(π/6, μ2) = 3

32
(4

√
6 − 7)+ 116 − 41

√
6 − (64 − 28

√
6)μ2

16(2 − √
6 − 2μ2)

η2. (48)

Figure 4 shows the evolution of the amplitudes with respect to the control parameter for
zero and non-vanishing shear modulus. We note a decrease in size of the hysteretic region
(for negative ε − μ2) with increasing shear modulus. While in the case of no elasticity the
lower boundary is at −0.25, it is shifted to −0.24 for a shear modulus of μ2 = 0.1 (where
both values are taken for a magnetic susceptibility of χ = 0.1). The second hysteretic region
for the transition between squares and hexagons also shrinks with increasing μ2. For instance,
the lower boundary of the hysteresis loop at 5.7 (for the right-hand side of equation (46)) for
μ2 = 0 increases to 6.9 for μ2 = 0.1, while the upper boundary of the hysteresis loop at 540
for μ2 = 0 is reduced to 480 for μ2 = 0.1 (χ = 0.1). This result should be experimentally
detectable, at least qualitatively.
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